127 research outputs found

    Preoperative brain imaging using functional near-infrared spectroscopy helps predict cochlear implant outcome in deaf adults

    Get PDF
    Currently it is not possible to accurately predict how well a deaf individual will be able to understand speech when hearing is (re)introduced via a cochlear implant. Differences in brain organisation following deafness are thought to contribute to variability in speech understanding with a cochlear implant and may offer unique insights that could help to more reliably predict outcomes. An emerging optical neuroimaging technique, functional near-infrared spectroscopy (fNIRS), was used to determine whether a preoperative measure of brain activation could explain variability in CI outcomes and offer additional prognostic value above that provided by known clinical characteristics. Cross-modal activation to visual speech was measured in bilateral superior temporal cortex of profoundly deaf adults before cochlear implantation. Behavioural measures of auditory speech understanding were obtained in the same individuals following six months of cochlear-implant use. The results showed that stronger preoperative cross-modal activation of auditory brain regions by visual speech was predictive of poorer auditory speech understanding after implantation. Further investigation suggested that this relationship may have been driven primarily by group differences between pre- and post-lingually deaf individuals. Nonetheless, preoperative cortical imaging provided additional prognostic value above that of influential clinical characteristics, including the age-at-onset and duration of auditory deprivation, suggesting that objectively assessing the physiological status of the brain using fNIRS imaging preoperatively may support more accurate prediction of individual CI outcomes. Whilst activation of auditory brain regions by visual speech prior to implantation was related to the CI user’s clinical history of deafness, activation to visual speech did not relate to the future ability of these brain regions to respond to auditory speech stimulation with a CI. Greater preoperative activation of left superior temporal cortex by visual speech was associated with enhanced speechreading abilities, suggesting that visual-speech processing may help to maintain left temporal-lobe specialisation for language processing during periods of profound deafness

    The Benefit of Cross-Modal Reorganization on Speech Perception in Pediatric Cochlear Implant Recipients Revealed Using Functional Near-Infrared Spectroscopy

    Get PDF
    Cochlear implants (CIs) are the most successful treatment for severe-to-profound deafness in children. However, speech outcomes with a CI often lag behind those of normally-hearing children. Some authors have attributed these deficits to the takeover of the auditory temporal cortex by vision following deafness, which has prompted some clinicians to discourage the rehabilitation of pediatric CI recipients using visual speech. We studied this cross-modal activity in the temporal cortex, along with responses to auditory speech and non-speech stimuli, in experienced CI users and normally-hearing controls of school-age, using functional near-infrared spectroscopy. Strikingly, CI users displayed significantly greater cortical responses to visual speech, compared with controls. Importantly, in the same regions, the processing of auditory speech, compared with non-speech stimuli, did not significantly differ between the groups. This suggests that visual and auditory speech are processed synergistically in the temporal cortex of children with CIs, and they should be encouraged, rather than discouraged, to use visual speech

    Investigating cortical responses to noise-vocoded speech in children with normal hearing using functional near-infrared spectroscopy (fNIRS)

    Get PDF
    Whilst functional neuroimaging has been used to investigate cortical processing of degraded speech in adults, much less is known about how these signals are processed in children. An enhanced understanding of cortical correlates of poor speech perception in children would be highly valuable to oral communication applications, including hearing devices. We utilised vocoded speech stimuli to investigate brain responses to degraded speech in 29 normally hearing children aged 6–12 years. Intelligibility of the speech stimuli was altered in two ways by (i) reducing the number of spectral channels and (ii) reducing the amplitude modulation depth of the signal. A total of five different noise-vocoded conditions (with zero, partial or high intelligibility) were presented in an event-related format whilst participants underwent functional near-infrared spectroscopy (fNIRS) neuroimaging. Participants completed a word recognition task during imaging, as well as a separate behavioural speech perception assessment. fNIRS recordings revealed statistically significant sensitivity to stimulus intelligibility across several brain regions. More intelligible stimuli elicited stronger responses in temporal regions, predominantly within the left hemisphere, while right inferior parietal regions showed an opposite, negative relationship. Although there was some evidence that partially intelligible stimuli elicited the strongest responses in the left inferior frontal cortex, a region previous studies have suggested is associated with effortful listening in adults, this effect did not reach statistical significance. These results further our understanding of cortical mechanisms underlying successful speech perception in children. Furthermore, fNIRS holds promise as a clinical technique to help assess speech intelligibility in paediatric populations

    Evaluating time-reversed speech and signal-correlated noise as auditory baselines for isolating speech-specific processing using fNIRS

    Get PDF
    Evidence using well-established imaging techniques, such as functional magnetic resonance imaging and electrocorticography, suggest that speech-specific cortical responses can be functionally localised by contrasting speech responses with an auditory baseline stimulus, such as time-reversed (TR) speech or signal-correlated noise (SCN). Furthermore, these studies suggest that SCN is a more effective baseline than TR speech. Functional near-infrared spectroscopy (fNIRS) is a relatively novel, optically-based imaging technique with features that make it ideal for investigating speech and language function in paediatric populations. However, it is not known which baseline is best at isolating speech activation when imaging using fNIRS. We presented normal speech, TR speech and SCN in an event-related format to 25 normally-hearing children aged 6–12 years. Brain activity was measured across frontal and temporal brain areas in both cerebral hemispheres whilst children passively listened to the auditory stimuli. In all three conditions, significant activation was observed bilaterally in channels targeting superior temporal regions when stimuli were contrasted against silence. Unlike previous findings in infants, we found no significant activation in the region of interest over superior temporal cortex in school-age children when normal speech was contrasted against either TR speech or SCN. Although no statistically significant lateralisation effects were observed in the region of interest, a left-sided channel targeting posterior temporal regions showed significant activity in response to normal speech only, and was investigated further. Significantly greater activation was observed in this left posterior channel compared to the corresponding channel on the right side under the normal speech vs SCN contrast only. Our findings suggest that neither TR speech nor SCN are suitable auditory baselines for functionally isolating speech-specific processing in an experimental set up involving fNIRS with 6–12 year old children

    Cortical correlates of speech intelligibility measured using functional near-infrared spectroscopy (fNIRS)

    Get PDF
    Functional neuroimaging has identified that the temporal, frontal and parietal cortex support core aspects of speech processing. An objective measure of speech intelligibility based on cortical activation in these brain regions would be extremely useful to speech communication and hearing device applications. In the current study, we used noise-vocoded speech to examine cortical correlates of speech intelligibility in normally-hearing listeners using functional near-infrared spectroscopy (fNIRS), a non-invasive, neuroimaging technique that is fully-compatible with hearing devices, including cochlear implants. In twenty-three normally-hearing adults we measured (1) activation in superior temporal, inferior frontal and inferior parietal cortex bilaterally and (2) behavioural speech intelligibility. Listeners heard noise-vocoded sentences targeting five equally spaced levels of intelligibility between 0 and 100% correct. Activation in superior temporal regions increased linearly with intelligibility. This relationship appears to have been driven in part by changing acoustic properties across stimulation conditions, rather than solely by intelligibility per se. Superior temporal activation was also predictive of individual differences in intelligibility in a challenging listening condition. Beyond superior temporal cortex, we identified regions in which activation varied non-linearly with intelligibility. For example, in left inferior frontal cortex, activation peaked in response to heavily degraded, yet still somewhat intelligible, speech. Activation in this region was linearly related to response time on a simultaneous behavioural task, suggesting it may contribute to decision making. Our results indicate that fNIRS has the potential to provide an objective measure of speech intelligibility in normally-hearing listeners. Should these results be found to apply similarly in the case of individuals listening through a cochlear implant, fNIRS would demonstrate potential for a clinically useful measure not only of speech intelligibility, but also of listening effort

    Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan nanocapsules

    Get PDF
    Vitamin C (VC), widely used in food, pharmaceutical and cosmetic products, is susceptible to degradation, and new formulations are necessary to maintain its stability. To address this challenge, VC encapsulation was achieved via electrostatic interaction with glycidyltrimethylammonium chloride (GTMAC)-chitosan (GCh) followed by cross-linking with phosphorylated-cellulose nanocrystals (PCNC) to form VC-GCh-PCNC nanocapsules. The particle size, surface charge, degradation, encapsulation efficiency, cumulative release, free-radical scavenging assay, and antibacterial test were quantified. Additionally, a simulated human gastrointestinal environment was used to assess the efficacy of the encapsulated VC under physiological conditions. Both VC loaded, GCh-PCNC, and GCh-Sodium tripolyphosphate (TPP) nanocapsules were spherical with a diameter of 450 ​± ​8 and 428 ​± ​6 ​nm respectively. VC-GCh-PCNC displayed a higher encapsulation efficiency of 90.3 ​± ​0.42% and a sustained release over 14 days. The release profiles were fitted to the first-order and Higuchi kinetic models with R2 values greater than 0.95. VC-GCh-PCNC possessed broad-spectrum antibacterial activity with a minimum inhibition concentration (MIC) of 8–16 ​μg/mL. These results highlight that modified CNC-based nano-formulations can preserve, protect and control the release of active compounds with improved antioxidant and antibacterial properties for food and nutraceutical applications.Professor K. C. Tam wishes to acknowledge the funding from CFI and NSERC. CelluForce and AboraNano supported this CNC based research

    More salt, please:global patterns, responses, and impacts of foliar sodium in grasslands

    Get PDF
    Sodium is unique among abundant elemental nutrients, because most plant species do not require it for growth or development, whereas animals physiologically require sodium. Foliar sodium influences consumption rates by animals and can structure herbivores across landscapes. We quantified foliar sodium in 201 locally abundant, herbaceous species representing 32 families and, at 26 sites on four continents, experimentally manipulated vertebrate herbivores and elemental nutrients to determine their effect on foliar sodium. Foliar sodium varied taxonomically and geographically, spanning five orders of magnitude. Site‐level foliar sodium increased most strongly with site aridity and soil sodium; nutrient addition weakened the relationship between aridity and mean foliar sodium. Within sites, high sodium plants declined in abundance with fertilisation, whereas low sodium plants increased. Herbivory provided an explanation: herbivores selectively reduced high nutrient, high sodium plants. Thus, interactions among climate, nutrients and the resulting nutritional value for herbivores determine foliar sodium biogeography in herbaceous‐dominated systems
    corecore